โš”๏ธ
DSA Important Questions
  • ๐Ÿ˜‡README
  • ๐Ÿ”ซQuestion List
  • ๐ŸงชFormula List
  • ๐Ÿ—’๏ธ01 Array
    • โœ…Rotate Matrix
    • โœ…Max Sum Contiguous Subarray
    • Find Duplicate in Array
    • โœ…Merge Intervals
    • โœ…Spiral Order Matrix I
    • Repeat and Missing Number Array
    • โœ…Merge Overlapping Intervals
    • โœ…Set Matrix Zeros
    • โœ…Spiral Order Matrix II
    • Largest Number
    • First Missing Integer
    • โœ…Pascal Triangle
    • โญMax Distance
    • โœ…Wavy Array
    • Next Permutation
    • โœ…Min Steps in Infinite Grid
    • Flip
    • โญFind Permutation
    • โญMaximum Absolute Difference
    • โญMaximum Unsorted Subarray
    • Reorder Data in Log File
    • โœ…Make equal elements Array
  • โž•02 Math
    • โœ…Excel Column Number
    • โญExcel Column Title
    • โญGrid Unique Paths
    • โญPower Of Two Integers
    • โœ…Next Similar Number
    • โญk-th Permutation
  • ๐Ÿ”03 Binary Search
    • โญMedian of Array
    • โญSquare Root of Integer
    • โญRotated Sorted Array Search
    • โญMatrix Median
    • Capacity To Ship Packages Within B Days
  • ๐Ÿงต04 String
    • Implement StrStr
    • โญInteger to Roman
    • โญRoman to Integer
    • Length of Last Word
    • โญatoi
    • โญValid IP Addresses
    • โญCompare Version Numbers
    • โญLongest Palindromic Substring
    • Count And Say
    • Reverse the String
    • Power of 2
    • ๐ŸšงKMP: Minimum Characters Required to Make a String Palindromic
    • โญConvert to Palindrome
    • Bulls and Cows
  • 1๏ธโƒฃ05 Bit Manipulation
    • Reverse Bits
    • Single Number
    • โญDivide Integers
    • โญSingle Number II
    • โญCount Total Set Bits
    • โญPalindromic Binary Representation
  • โœŒ๏ธ06 Two Pointers
    • Merge Two Sorted Lists II
    • โญ3 Sum
    • Remove Duplicates from sorted Array
    • โญContainer With Most Water
    • Remove Element from Array
    • โญMax Continuous Series of 1s
    • Pair With Given Difference
    • โญMaximum Ones After Modification
  • ๐Ÿ”—07 Linked List
    • Swap List Nodes in Pairs
    • Rotate List
    • โญReorder List
    • Merge Two Sorted Lists
    • Remove Duplicates from Sorted List
    • Add Two Numbers as Lists
    • Remove Nth Node from List End
    • โญList Cycle
    • Intersection of Linked Lists
    • โญReverse Linked List II
    • Palindrome List
    • โญK reverse linked list
    • โญReverse Alternate K Nodes
    • โญKth Node From Middle
    • โญSort Binary Linked List
    • โญEven Reverse
  • ๐Ÿ“š08 Stacks and Queues
    • โญRain Water Trapping
    • Generate all Parentheses
    • โญLargest Rectangle in Histogram
    • โญMin Stack
    • Redundant Braces
    • Nearest Smaller Element
    • โญFirst non-repeating character in a stream of characters
    • โœ…Balanced Parantheses!
  • ๐Ÿ”™09 Backtracking
    • โญKth Permutation Sequence
    • โญCombination Sum
    • Combination Sum II
    • โญNQueens
    • Combinations
    • โญSubsets II
    • Subset
    • Palindrome Partitioning
  • ๐Ÿ’ฑ10 Hashing
    • โญLongest Consecutive Sequence
    • โญ4 Sum
    • โญAnagrams
    • โญPoints on the Straight Line
    • 2 Sum
    • โญValid Sudoku
    • Copy List
    • Longest Substring Without Repeat
  • ๐Ÿ—ป11 Heaps & Maps
    • Merge K Sorted Lists
    • โญLRU Cache
    • โญInversions
    • Distinct Numbers in Window
  • ๐ŸŒณ12 Tree Data Structure
    • โœ…Inorder Traversal
    • โญRecover Binary Search Tree
    • โญInorder Traversal of Cartesian Tree
    • โญLeast Common Ancestor
    • โญConstruct Binary Tree From Inorder And Preorder
    • Flatten Binary Tree to Linked List
    • Valid Binary Search Tree
    • โœ…Preorder Traversal
    • โญBinary Tree From Inorder And Postorder
    • Balanced Binary Tree
    • โœ…Sorted Array To Balanced BST
    • Symmetric Binary Tree
    • โœ…Postorder Traversal
    • โญPopulate Next Right Pointers Tree
    • Identical Binary Trees
    • BST Iterator
    • ZigZag Level Order Traversal BT
    • Path Sum
    • Next Pointer Binary Tree
    • Min Depth of Binary Tree
    • Root to Leaf Paths With Sum
    • โญKth Smallest Element in Tree
    • โญ2-Sum Binary Tree
    • Vertical Order traversal of Binary Tree
    • โญDiagonal Traversal
    • Cousins in Binary Tree
    • Path to Given Node
    • Remove Half Nodes
    • Merge two Binary Tree
    • โญBurn a Tree
    • Nodes at Distance K
    • Vertical Sum of a Binary Tree
    • Covered / Uncovered Nodes
  • 13 Dynamic Programming
    • Ugly Number II
    • Coin Change
    • 0 - 1 Knapsack Problem
    • Permutation Coefficient
  • 14 Greedy Algorithm
    • โญGas Station
    • โญMajority Element
    • โญDistribute Candy
    • โญHighest Product
    • Assign Mice to Holes
    • โญMeeting rooms
  • ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ15 Graph
    • Clone Graph
    • Word Search Board
    • โญStepping Numbers
    • Black Shapes
    • Knight On Chess Board
    • โŒSmallest Multiple With 0 and 1
    • โญCommutable Islands
    • Possibility of finishing all courses given pre-requisites
    • โŒValid Path
    • Cycle in Directed Graph
    • โŒCycle in Undirected Graph
Powered by GitBook
On this page
  1. 15 Graph

Word Search Board

PreviousClone GraphNextStepping Numbers

Last updated 2 years ago

// in a 2D matrix where i signifies row and j signifies column
// xDelta moves i up and down
// yDelta moves j left and right
int xDelta[] = {0, 0, -1, 1};
int yDelta[] = {-1, 1, 0, 0};

/**
* @brief checks if i and j is bounded within row count and col count when
* moving in the dir direction using xDelta and yDelta
*
* @return true bounded
* @return fale out of bounds
*/
bool isBounded(int i, int j, int dir, int rowCount, int colCount) {
    i += xDelta[dir];
    j += yDelta[dir];
    
    if(i < 0 || j < 0 || i >= rowCount || j >= colCount)
        return false;
    return true;
}

/**
* @brief each iteration checks if the character at index \p index in the string \p B
* is present at (\p i, \p j) or not. 
* If not return false
* If present search the next index in all four directions.
* If all chars searched then return true
* 
* @return false not present starting at (i, j)
* @return true if the word was found string from (i, j). 
*
*/
bool search(vector<string> &A, int i, int j, string &B, int index) {
    // Since string is 0 indexed, an attempt to search the nth character 
    // means that all the previous characters were found.
    // i.e. the word search has successfully completed. return true.
    if(index == B.size())
        return true;
        
    // if(i, j) th character is not B[index] then there is no match. return false
    if(A[i][j] != B[index])
        return false;        
    
    // flag that assumes that search will fail
    bool found = false;
    // combine xDelta and yDelta to current i, j and attempt to move in 4 directions
    for(int dir = 0; dir < 4; dir++) 
        // make sure the search is being done in bound
        if(isBounded(i, j, dir, A.size(), A[0].size()))
            if(search(A, i + xDelta[dir], j + yDelta[dir], B, index + 1)) 
                // if found then change flag and don't search further
                return true;
            
    return false;
}

int Solution::exist(vector<string> &A, string B) {
    // points at the character that is being matched
    int index = 0;
    // find this in matrix to look for the starting point of search
    int firstLetter = B[index];
    // check each character of the given grid to find a potential starting point i.e. char == first letter
    // search for the word from this point on. If found return true.
    for(int i = 0; i < A.size(); i++)
        for(int j = 0; j < A[0].size(); j++)
            if(A[i][j] == firstLetter && search(A, i, j, B, index))
                return true;
                
    // if after trying out every possible starting point and attempting to find the word
    // it was still not found then it is not there. Return false.
    return false;
}
Without Comments
int xDelta[] = {0, 0, -1, 1};
int yDelta[] = {-1, 1, 0, 0};

bool isBounded(int i, int j, int dir, int rowCount, int colCount) {
    i += xDelta[dir];
    j += yDelta[dir];
    
    if(i < 0 || j < 0 || i >= rowCount || j >= colCount)
        return false;
    return true;
}

bool search(vector<string> &A, int i, int j, string &B, int index) {
    if(index == B.size())
        return true;
        
    if(A[i][j] != B[index])
        return false;        
    
    bool found = false;
    for(int dir = 0; dir < 4; dir++) 
        if(isBounded(i, j, dir, A.size(), A[0].size()))
            if(search(A, i + xDelta[dir], j + yDelta[dir], B, index + 1)) 
                return true;
            
    return false;
}

int Solution::exist(vector<string> &A, string B) {
    int index = 0;
    int firstLetter = B[index];
    for(int i = 0; i < A.size(); i++)
        for(int j = 0; j < A[0].size(); j++)
            if(A[i][j] == firstLetter && search(A, i, j, B, index))
                return true;
                
    return false;
}
๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ
Word Search Board - InterviewBitInterviewBit
Logo