โš”๏ธ
DSA Important Questions
  • ๐Ÿ˜‡README
  • ๐Ÿ”ซQuestion List
  • ๐ŸงชFormula List
  • ๐Ÿ—’๏ธ01 Array
    • โœ…Rotate Matrix
    • โœ…Max Sum Contiguous Subarray
    • Find Duplicate in Array
    • โœ…Merge Intervals
    • โœ…Spiral Order Matrix I
    • Repeat and Missing Number Array
    • โœ…Merge Overlapping Intervals
    • โœ…Set Matrix Zeros
    • โœ…Spiral Order Matrix II
    • Largest Number
    • First Missing Integer
    • โœ…Pascal Triangle
    • โญMax Distance
    • โœ…Wavy Array
    • Next Permutation
    • โœ…Min Steps in Infinite Grid
    • Flip
    • โญFind Permutation
    • โญMaximum Absolute Difference
    • โญMaximum Unsorted Subarray
    • Reorder Data in Log File
    • โœ…Make equal elements Array
  • โž•02 Math
    • โœ…Excel Column Number
    • โญExcel Column Title
    • โญGrid Unique Paths
    • โญPower Of Two Integers
    • โœ…Next Similar Number
    • โญk-th Permutation
  • ๐Ÿ”03 Binary Search
    • โญMedian of Array
    • โญSquare Root of Integer
    • โญRotated Sorted Array Search
    • โญMatrix Median
    • Capacity To Ship Packages Within B Days
  • ๐Ÿงต04 String
    • Implement StrStr
    • โญInteger to Roman
    • โญRoman to Integer
    • Length of Last Word
    • โญatoi
    • โญValid IP Addresses
    • โญCompare Version Numbers
    • โญLongest Palindromic Substring
    • Count And Say
    • Reverse the String
    • Power of 2
    • ๐ŸšงKMP: Minimum Characters Required to Make a String Palindromic
    • โญConvert to Palindrome
    • Bulls and Cows
  • 1๏ธโƒฃ05 Bit Manipulation
    • Reverse Bits
    • Single Number
    • โญDivide Integers
    • โญSingle Number II
    • โญCount Total Set Bits
    • โญPalindromic Binary Representation
  • โœŒ๏ธ06 Two Pointers
    • Merge Two Sorted Lists II
    • โญ3 Sum
    • Remove Duplicates from sorted Array
    • โญContainer With Most Water
    • Remove Element from Array
    • โญMax Continuous Series of 1s
    • Pair With Given Difference
    • โญMaximum Ones After Modification
  • ๐Ÿ”—07 Linked List
    • Swap List Nodes in Pairs
    • Rotate List
    • โญReorder List
    • Merge Two Sorted Lists
    • Remove Duplicates from Sorted List
    • Add Two Numbers as Lists
    • Remove Nth Node from List End
    • โญList Cycle
    • Intersection of Linked Lists
    • โญReverse Linked List II
    • Palindrome List
    • โญK reverse linked list
    • โญReverse Alternate K Nodes
    • โญKth Node From Middle
    • โญSort Binary Linked List
    • โญEven Reverse
  • ๐Ÿ“š08 Stacks and Queues
    • โญRain Water Trapping
    • Generate all Parentheses
    • โญLargest Rectangle in Histogram
    • โญMin Stack
    • Redundant Braces
    • Nearest Smaller Element
    • โญFirst non-repeating character in a stream of characters
    • โœ…Balanced Parantheses!
  • ๐Ÿ”™09 Backtracking
    • โญKth Permutation Sequence
    • โญCombination Sum
    • Combination Sum II
    • โญNQueens
    • Combinations
    • โญSubsets II
    • Subset
    • Palindrome Partitioning
  • ๐Ÿ’ฑ10 Hashing
    • โญLongest Consecutive Sequence
    • โญ4 Sum
    • โญAnagrams
    • โญPoints on the Straight Line
    • 2 Sum
    • โญValid Sudoku
    • Copy List
    • Longest Substring Without Repeat
  • ๐Ÿ—ป11 Heaps & Maps
    • Merge K Sorted Lists
    • โญLRU Cache
    • โญInversions
    • Distinct Numbers in Window
  • ๐ŸŒณ12 Tree Data Structure
    • โœ…Inorder Traversal
    • โญRecover Binary Search Tree
    • โญInorder Traversal of Cartesian Tree
    • โญLeast Common Ancestor
    • โญConstruct Binary Tree From Inorder And Preorder
    • Flatten Binary Tree to Linked List
    • Valid Binary Search Tree
    • โœ…Preorder Traversal
    • โญBinary Tree From Inorder And Postorder
    • Balanced Binary Tree
    • โœ…Sorted Array To Balanced BST
    • Symmetric Binary Tree
    • โœ…Postorder Traversal
    • โญPopulate Next Right Pointers Tree
    • Identical Binary Trees
    • BST Iterator
    • ZigZag Level Order Traversal BT
    • Path Sum
    • Next Pointer Binary Tree
    • Min Depth of Binary Tree
    • Root to Leaf Paths With Sum
    • โญKth Smallest Element in Tree
    • โญ2-Sum Binary Tree
    • Vertical Order traversal of Binary Tree
    • โญDiagonal Traversal
    • Cousins in Binary Tree
    • Path to Given Node
    • Remove Half Nodes
    • Merge two Binary Tree
    • โญBurn a Tree
    • Nodes at Distance K
    • Vertical Sum of a Binary Tree
    • Covered / Uncovered Nodes
  • 13 Dynamic Programming
    • Ugly Number II
    • Coin Change
    • 0 - 1 Knapsack Problem
    • Permutation Coefficient
  • 14 Greedy Algorithm
    • โญGas Station
    • โญMajority Element
    • โญDistribute Candy
    • โญHighest Product
    • Assign Mice to Holes
    • โญMeeting rooms
  • ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ15 Graph
    • Clone Graph
    • Word Search Board
    • โญStepping Numbers
    • Black Shapes
    • Knight On Chess Board
    • โŒSmallest Multiple With 0 and 1
    • โญCommutable Islands
    • Possibility of finishing all courses given pre-requisites
    • โŒValid Path
    • Cycle in Directed Graph
    • โŒCycle in Undirected Graph
Powered by GitBook
On this page
  1. 15 Graph

Knight On Chess Board

PreviousBlack ShapesNextSmallest Multiple With 0 and 1

Last updated 2 years ago

Using BFS

Whener you need to find the shortest path always use BFS. Never DFS.

// USING 1 INDEXING ALLTOGETHER

// a class knight that stores its position and the number of steps it have moved
// to reach this position. It can generate new knight
// that have moved a valid knight move which might be outside the board 
class Knight {
  public:
    int row;
    int col;
    int moveCount;
    
    // adding these delta to row and col
    // moves them up-down and left-right respectivesly
    int rowDelta[8] = {-2, -2, -1, -1, 1, 1, 2, 2};
    int colDelta[8] = {1, -1, 2, -2, 2, -2, 1, -1};
    
    Knight(int row, int col, int moveCount) {
        this->row = row;
        this->col = col;
        this->moveCount = moveCount;
    }
    
    vector<Knight> getMoves() const{
        vector<Knight> moves;
        
        for(int dir = 0; dir < 8; dir++)
            moves.push_back(
                    Knight(row + rowDelta[dir], 
                            col + colDelta[dir], 
                            this->moveCount + 1
                            ));
            
        return moves;
    }    
    
    bool operator==(const Knight &otherKnight) {
        return this->row == otherKnight.row && this->col == otherKnight.col;
    }
};

// a class board that stores the dimension of the board and can check
// if a knight is inside the board or not. It can also remember what 
// cells of the board have been visited
class Board {
  public:
    int rowCount;
    int colCount;
    
    vector<vector<bool>> placed;
    
    Board(int rowCount, int colCount) {
        this->rowCount = rowCount;
        this->colCount = colCount;
        
        this->placed = 
            vector<vector<bool>>(rowCount + 1, vector<bool>(colCount + 1));
    }
    
    bool isBounded(const Knight &knight) const {
        if(knight.row < 1 || knight.col < 1 || 
                knight.row > rowCount || knight.col > colCount)
            return false;
        return true;
    }  
    
    void markPlaced(const Knight &knight) {
        this->placed[knight.row][knight.col] = true;
    }
    
    void unmarkPlaced(const Knight &knight) {
        this->placed[knight.row][knight.col] = false;
    }
    
    bool isPlaced(const Knight &knight) const {
        return this->placed[knight.row][knight.col];
    }
};

// WHENVER YOU NEED SHORTEST PATH. ALWAYS USE BFS. 
// NEVER DFS

int Solution::knight(int A, int B, int C, int D, int E, int F) {
    Board board(A, B);
    Knight knight(C, D, 0);
    Knight target(E, F, -1);
    
    // a queue for the current knight
    queue<Knight> q;
    // push the initial knight with 0 moves
    q.push(knight);
    // mark as visited
    board.markPlaced(knight);
    
    // until all possible moves have been made
    while(!q.empty()) {
        Knight currentKnight = q.front();
        q.pop();
        
        if(currentKnight == target)
            return currentKnight.moveCount;
            
        for(Knight nextKnight: currentKnight.getMoves()) 
            if(board.isBounded(nextKnight) && !board.isPlaced(nextKnight)) {
                board.markPlaced(nextKnight);
                q.push(nextKnight);
            }
    }
    
    return -1;
}
๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ
Knight On Chess Board - InterviewBitInterviewBit
Logo