โš”๏ธ
DSA Important Questions
  • ๐Ÿ˜‡README
  • ๐Ÿ”ซQuestion List
  • ๐ŸงชFormula List
  • ๐Ÿ—’๏ธ01 Array
    • โœ…Rotate Matrix
    • โœ…Max Sum Contiguous Subarray
    • Find Duplicate in Array
    • โœ…Merge Intervals
    • โœ…Spiral Order Matrix I
    • Repeat and Missing Number Array
    • โœ…Merge Overlapping Intervals
    • โœ…Set Matrix Zeros
    • โœ…Spiral Order Matrix II
    • Largest Number
    • First Missing Integer
    • โœ…Pascal Triangle
    • โญMax Distance
    • โœ…Wavy Array
    • Next Permutation
    • โœ…Min Steps in Infinite Grid
    • Flip
    • โญFind Permutation
    • โญMaximum Absolute Difference
    • โญMaximum Unsorted Subarray
    • Reorder Data in Log File
    • โœ…Make equal elements Array
  • โž•02 Math
    • โœ…Excel Column Number
    • โญExcel Column Title
    • โญGrid Unique Paths
    • โญPower Of Two Integers
    • โœ…Next Similar Number
    • โญk-th Permutation
  • ๐Ÿ”03 Binary Search
    • โญMedian of Array
    • โญSquare Root of Integer
    • โญRotated Sorted Array Search
    • โญMatrix Median
    • Capacity To Ship Packages Within B Days
  • ๐Ÿงต04 String
    • Implement StrStr
    • โญInteger to Roman
    • โญRoman to Integer
    • Length of Last Word
    • โญatoi
    • โญValid IP Addresses
    • โญCompare Version Numbers
    • โญLongest Palindromic Substring
    • Count And Say
    • Reverse the String
    • Power of 2
    • ๐ŸšงKMP: Minimum Characters Required to Make a String Palindromic
    • โญConvert to Palindrome
    • Bulls and Cows
  • 1๏ธโƒฃ05 Bit Manipulation
    • Reverse Bits
    • Single Number
    • โญDivide Integers
    • โญSingle Number II
    • โญCount Total Set Bits
    • โญPalindromic Binary Representation
  • โœŒ๏ธ06 Two Pointers
    • Merge Two Sorted Lists II
    • โญ3 Sum
    • Remove Duplicates from sorted Array
    • โญContainer With Most Water
    • Remove Element from Array
    • โญMax Continuous Series of 1s
    • Pair With Given Difference
    • โญMaximum Ones After Modification
  • ๐Ÿ”—07 Linked List
    • Swap List Nodes in Pairs
    • Rotate List
    • โญReorder List
    • Merge Two Sorted Lists
    • Remove Duplicates from Sorted List
    • Add Two Numbers as Lists
    • Remove Nth Node from List End
    • โญList Cycle
    • Intersection of Linked Lists
    • โญReverse Linked List II
    • Palindrome List
    • โญK reverse linked list
    • โญReverse Alternate K Nodes
    • โญKth Node From Middle
    • โญSort Binary Linked List
    • โญEven Reverse
  • ๐Ÿ“š08 Stacks and Queues
    • โญRain Water Trapping
    • Generate all Parentheses
    • โญLargest Rectangle in Histogram
    • โญMin Stack
    • Redundant Braces
    • Nearest Smaller Element
    • โญFirst non-repeating character in a stream of characters
    • โœ…Balanced Parantheses!
  • ๐Ÿ”™09 Backtracking
    • โญKth Permutation Sequence
    • โญCombination Sum
    • Combination Sum II
    • โญNQueens
    • Combinations
    • โญSubsets II
    • Subset
    • Palindrome Partitioning
  • ๐Ÿ’ฑ10 Hashing
    • โญLongest Consecutive Sequence
    • โญ4 Sum
    • โญAnagrams
    • โญPoints on the Straight Line
    • 2 Sum
    • โญValid Sudoku
    • Copy List
    • Longest Substring Without Repeat
  • ๐Ÿ—ป11 Heaps & Maps
    • Merge K Sorted Lists
    • โญLRU Cache
    • โญInversions
    • Distinct Numbers in Window
  • ๐ŸŒณ12 Tree Data Structure
    • โœ…Inorder Traversal
    • โญRecover Binary Search Tree
    • โญInorder Traversal of Cartesian Tree
    • โญLeast Common Ancestor
    • โญConstruct Binary Tree From Inorder And Preorder
    • Flatten Binary Tree to Linked List
    • Valid Binary Search Tree
    • โœ…Preorder Traversal
    • โญBinary Tree From Inorder And Postorder
    • Balanced Binary Tree
    • โœ…Sorted Array To Balanced BST
    • Symmetric Binary Tree
    • โœ…Postorder Traversal
    • โญPopulate Next Right Pointers Tree
    • Identical Binary Trees
    • BST Iterator
    • ZigZag Level Order Traversal BT
    • Path Sum
    • Next Pointer Binary Tree
    • Min Depth of Binary Tree
    • Root to Leaf Paths With Sum
    • โญKth Smallest Element in Tree
    • โญ2-Sum Binary Tree
    • Vertical Order traversal of Binary Tree
    • โญDiagonal Traversal
    • Cousins in Binary Tree
    • Path to Given Node
    • Remove Half Nodes
    • Merge two Binary Tree
    • โญBurn a Tree
    • Nodes at Distance K
    • Vertical Sum of a Binary Tree
    • Covered / Uncovered Nodes
  • 13 Dynamic Programming
    • Ugly Number II
    • Coin Change
    • 0 - 1 Knapsack Problem
    • Permutation Coefficient
  • 14 Greedy Algorithm
    • โญGas Station
    • โญMajority Element
    • โญDistribute Candy
    • โญHighest Product
    • Assign Mice to Holes
    • โญMeeting rooms
  • ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ15 Graph
    • Clone Graph
    • Word Search Board
    • โญStepping Numbers
    • Black Shapes
    • Knight On Chess Board
    • โŒSmallest Multiple With 0 and 1
    • โญCommutable Islands
    • Possibility of finishing all courses given pre-requisites
    • โŒValid Path
    • Cycle in Directed Graph
    • โŒCycle in Undirected Graph
Powered by GitBook
On this page
  • Using DFS
  • Using Topological Sort BFS
  1. 15 Graph

Possibility of finishing all courses given pre-requisites

PreviousCommutable IslandsNextValid Path

Last updated 2 years ago

Using DFS

bool hasCycle(int node, vector<bool> &visited, vector<bool> &dfsVisited, 
              vector<int> adjList[]) {
    visited[node] = dfsVisited[node] = true;
    
    for(int neighbour: adjList[node]) 
        if(!visited[neighbour]) {
            if(hasCycle(neighbour, visited, dfsVisited, adjList))
                return true;
        } else if(dfsVisited[neighbour])
            return true;
            
    dfsVisited[node] = false;
    return false;
}

int Solution::solve(int A, vector<int> &B, vector<int> &C) {
    // cycle detection in a directed graph
    
    // * Create adjList
    vector<int> adjList[A + 1];
    
    for(int i = 0; i < B.size(); i++) 
        adjList[B[i]].push_back(C[i]);
        
    
    // * Data Strucutres requred for cycle detection through DFS
    vector<bool> visited(A + 1);
    vector<bool> dfsVisited(A + 1);
    
    // * for each component, call dfs
    for(int node = 1; node <= A; node++)
        if(!visited[node])
            if(hasCycle(node, visited, dfsVisited, adjList))
                return false; // if cyclic then course can't be taken
                
    return true;
    // if acyclic then coures can be taken
}

Using Topological Sort BFS

int Solution::solve(int A, vector<int> &B, vector<int> &C) {
    // * create a directed adjList
    vector<int> adjList[A + 1];
    for(int i = 0; i < B.size(); i++)
        adjList[B[i]].push_back(C[i]);
        
    // * create a topological sort
    
    // ? data strucutre for topological sort using bfs
    vector<int> indegree(A + 1);
    queue<int> q;
    vector<int> topologicalSort;
    
    // * fill indegree of all vertices
    for(int node = 1; node <= A; node++)
        for(int neighbour : adjList[node])
            indegree[neighbour]++;
            
    // * push into queue those vertices that have 0 indegree
    for(int node = 1; node <= A; node++) 
        if(indegree[node] == 0) 
            q.push(node);
            
    while(!q.empty()) {
        int frontNode = q.front();
        q.pop();
        
        topologicalSort.push_back(frontNode);
        
        for(int neighbour : adjList[frontNode]) {
            indegree[neighbour]--;
            if(indegree[neighbour] == 0)
                q.push(neighbour);
        }
    }
    
    return topologicalSort.size() == A;
}
๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ
Possibility of finishing all courses given pre-requisites - InterviewBitInterviewBit
Cycle Detection
Logo