โš”๏ธ
DSA Important Questions
  • ๐Ÿ˜‡README
  • ๐Ÿ”ซQuestion List
  • ๐ŸงชFormula List
  • ๐Ÿ—’๏ธ01 Array
    • โœ…Rotate Matrix
    • โœ…Max Sum Contiguous Subarray
    • Find Duplicate in Array
    • โœ…Merge Intervals
    • โœ…Spiral Order Matrix I
    • Repeat and Missing Number Array
    • โœ…Merge Overlapping Intervals
    • โœ…Set Matrix Zeros
    • โœ…Spiral Order Matrix II
    • Largest Number
    • First Missing Integer
    • โœ…Pascal Triangle
    • โญMax Distance
    • โœ…Wavy Array
    • Next Permutation
    • โœ…Min Steps in Infinite Grid
    • Flip
    • โญFind Permutation
    • โญMaximum Absolute Difference
    • โญMaximum Unsorted Subarray
    • Reorder Data in Log File
    • โœ…Make equal elements Array
  • โž•02 Math
    • โœ…Excel Column Number
    • โญExcel Column Title
    • โญGrid Unique Paths
    • โญPower Of Two Integers
    • โœ…Next Similar Number
    • โญk-th Permutation
  • ๐Ÿ”03 Binary Search
    • โญMedian of Array
    • โญSquare Root of Integer
    • โญRotated Sorted Array Search
    • โญMatrix Median
    • Capacity To Ship Packages Within B Days
  • ๐Ÿงต04 String
    • Implement StrStr
    • โญInteger to Roman
    • โญRoman to Integer
    • Length of Last Word
    • โญatoi
    • โญValid IP Addresses
    • โญCompare Version Numbers
    • โญLongest Palindromic Substring
    • Count And Say
    • Reverse the String
    • Power of 2
    • ๐ŸšงKMP: Minimum Characters Required to Make a String Palindromic
    • โญConvert to Palindrome
    • Bulls and Cows
  • 1๏ธโƒฃ05 Bit Manipulation
    • Reverse Bits
    • Single Number
    • โญDivide Integers
    • โญSingle Number II
    • โญCount Total Set Bits
    • โญPalindromic Binary Representation
  • โœŒ๏ธ06 Two Pointers
    • Merge Two Sorted Lists II
    • โญ3 Sum
    • Remove Duplicates from sorted Array
    • โญContainer With Most Water
    • Remove Element from Array
    • โญMax Continuous Series of 1s
    • Pair With Given Difference
    • โญMaximum Ones After Modification
  • ๐Ÿ”—07 Linked List
    • Swap List Nodes in Pairs
    • Rotate List
    • โญReorder List
    • Merge Two Sorted Lists
    • Remove Duplicates from Sorted List
    • Add Two Numbers as Lists
    • Remove Nth Node from List End
    • โญList Cycle
    • Intersection of Linked Lists
    • โญReverse Linked List II
    • Palindrome List
    • โญK reverse linked list
    • โญReverse Alternate K Nodes
    • โญKth Node From Middle
    • โญSort Binary Linked List
    • โญEven Reverse
  • ๐Ÿ“š08 Stacks and Queues
    • โญRain Water Trapping
    • Generate all Parentheses
    • โญLargest Rectangle in Histogram
    • โญMin Stack
    • Redundant Braces
    • Nearest Smaller Element
    • โญFirst non-repeating character in a stream of characters
    • โœ…Balanced Parantheses!
  • ๐Ÿ”™09 Backtracking
    • โญKth Permutation Sequence
    • โญCombination Sum
    • Combination Sum II
    • โญNQueens
    • Combinations
    • โญSubsets II
    • Subset
    • Palindrome Partitioning
  • ๐Ÿ’ฑ10 Hashing
    • โญLongest Consecutive Sequence
    • โญ4 Sum
    • โญAnagrams
    • โญPoints on the Straight Line
    • 2 Sum
    • โญValid Sudoku
    • Copy List
    • Longest Substring Without Repeat
  • ๐Ÿ—ป11 Heaps & Maps
    • Merge K Sorted Lists
    • โญLRU Cache
    • โญInversions
    • Distinct Numbers in Window
  • ๐ŸŒณ12 Tree Data Structure
    • โœ…Inorder Traversal
    • โญRecover Binary Search Tree
    • โญInorder Traversal of Cartesian Tree
    • โญLeast Common Ancestor
    • โญConstruct Binary Tree From Inorder And Preorder
    • Flatten Binary Tree to Linked List
    • Valid Binary Search Tree
    • โœ…Preorder Traversal
    • โญBinary Tree From Inorder And Postorder
    • Balanced Binary Tree
    • โœ…Sorted Array To Balanced BST
    • Symmetric Binary Tree
    • โœ…Postorder Traversal
    • โญPopulate Next Right Pointers Tree
    • Identical Binary Trees
    • BST Iterator
    • ZigZag Level Order Traversal BT
    • Path Sum
    • Next Pointer Binary Tree
    • Min Depth of Binary Tree
    • Root to Leaf Paths With Sum
    • โญKth Smallest Element in Tree
    • โญ2-Sum Binary Tree
    • Vertical Order traversal of Binary Tree
    • โญDiagonal Traversal
    • Cousins in Binary Tree
    • Path to Given Node
    • Remove Half Nodes
    • Merge two Binary Tree
    • โญBurn a Tree
    • Nodes at Distance K
    • Vertical Sum of a Binary Tree
    • Covered / Uncovered Nodes
  • 13 Dynamic Programming
    • Ugly Number II
    • Coin Change
    • 0 - 1 Knapsack Problem
    • Permutation Coefficient
  • 14 Greedy Algorithm
    • โญGas Station
    • โญMajority Element
    • โญDistribute Candy
    • โญHighest Product
    • Assign Mice to Holes
    • โญMeeting rooms
  • ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ15 Graph
    • Clone Graph
    • Word Search Board
    • โญStepping Numbers
    • Black Shapes
    • Knight On Chess Board
    • โŒSmallest Multiple With 0 and 1
    • โญCommutable Islands
    • Possibility of finishing all courses given pre-requisites
    • โŒValid Path
    • Cycle in Directed Graph
    • โŒCycle in Undirected Graph
Powered by GitBook
On this page
  • Negation Technique
  • Using Sorting
  • Using Arithmetic
  1. 01 Array

Repeat and Missing Number Array

PreviousSpiral Order Matrix INextMerge Overlapping Intervals

Last updated 2 years ago

Approach
Time Complexity
Space Complexity
Remark

Negation Technique

Modification or duplication of given array

Using Sorting

Modification or duplication of given array

Negation Technique

vector<int> Solution::repeatedNumber(const vector<int> &A) {
    vector<int> ACopy(A.begin(), A.end());
    vector<int> res;
    for(int i = 0; i < ACopy.size(); i++) 
        if(ACopy[abs(ACopy[i]) - 1] > 0)
            ACopy[abs(ACopy[i]) - 1] = -ACopy[abs(ACopy[i]) - 1];
        else 
            res.push_back(abs(ACopy[i]));
            
    
    for(int i = 0; i < ACopy.size(); i++)
        if(ACopy[i] > 0) {
            res.push_back(i + 1);
            break;
        }
        
    return res;
            
}

Accepted

module.exports = { 
 //param A : array of integers
 //return a array of integers
	repeatedNumber : function(A){
        let res = []
        
        for(let i = 0; i < A.length; i++) 
            if(A[Math.abs(A[i]) - 1] > 0) 
                A[Math.abs(A[i]) - 1] = -A[Math.abs(A[i]) - 1]
            else 
                res.push(Math.abs(A[i]))
            
        for(let i = 0; i < A.length; i++)
            if(A[i] > 0) {
                res.push(i + 1)
                break
            }
            
        return res
	}
};

Accepted

Time Complexity: O(n)O(n)O(n)

Space Complexity: O(n)O(n)O(n) if const array. O(1)O(1)O(1) with modification of given array.

Using Sorting

vector<int> Solution::repeatedNumber(const vector<int> &A) {
    int missing, repeated;
    
    vector<int> sorted(A.begin(), A.end());
    
    sort(sorted.begin(), sorted.end());
    
    if(sorted[0] != 1)
        missing = 1;
    if(sorted[sorted.size() - 1] !=  sorted.size())
        missing = sorted.size();
        
    for(int i = 1; i < sorted.size(); i++) {
        if(sorted[i] - sorted[i - 1] == 2)
            missing = sorted[i - 1] + 1;
            
        if(sorted[i] == sorted[i - 1])   
            repeated = sorted[i];
    }
    
    vector<int> res = {repeated, missing};
    return res;
}
module.exports = { 
 //param A : array of integers
 //return a array of integers
	repeatedNumber : function(A){
        A.sort((a, b) => a - b)
        let missing = 0, repeated = 0;
        
        if(A[0] != 1)
            missing = 1;
        if(A[A.length - 1] != A.length)
            missing = A.length;
        for(let i = 1; i < A.length; i++) {
            if(A[i] - A[i - 1] == 2)
                missing = A[i - 1] + 1
            if(A[i] == A[i - 1])
                repeated = A[i]      
        }
        
        return[repeated, missing]
	}
};

Time Complexity: O(nlogโกn)O(n\log n)O(nlogn)โ€‹

Space Complexity: O(n)O(n)O(n)โ€‹ if const array. O(1)O(1)O(1)โ€‹ with modification of the given array.

Using Arithmetic

vector<int> Solution::repeatedNumber(const vector<int> &A) {
    long long n = A.size();
    
    long long sumN = n * (n + 1) / 2;
    long long sumN2 = n * (n + 1) * (2 * n + 1) / 6;
    
    long long sumA = 0;
    long long sumA2 = 0;

    for(const int &x: A) {
        sumA2 += x * x;
        sumA += x;
    }

    long long MissingMinusRepeating = sumN - sumA;
    long long Missing2MinusRepeating2 = sumN2 - sumA2;

    long long MissingPlusRepeating = Missing2MinusRepeating2 / MissingMinusRepeating;

    long long twiceMissing = MissingPlusRepeating + MissingMinusRepeating;
    long long twiceRepeating = MissingPlusRepeating - MissingMinusRepeating;

    vector<int> res = {twiceRepeating / 2, twiceMissing / 2};
    return res;
}

to

โ€‹

to

๐Ÿ—’๏ธ
O(n)O(n)O(n)
O(1)O(1)O(1)
O(n)O(n)O(n)
O(nlogโกn)O(n\log n)O(nlogn)
O(1)O(1)O(1)
O(n)O(n)O(n)
Repeat and Missing Number Array - InterviewBitInterviewBit
Logo